Measurement of Free Nucleon Structure and Nuclear Modifications Using Deuteron Tagged DIS at the EIC

Alex Jentsch, Kong Tu, Christian Weiss Feb. 11th, 2020 EIC BNL Meeting

Scope of This Study

- Perform tagged DIS measurements on unpolarized deuteron at the EIC.
 - Provides access to the free neutron structure function.
 - Study nuclear modifications of both nucleons in the deuteron.
 - EMC effect, anti-shadowing, etc.
- Utilizing tagging provides experimental access to dial the kinematics between the "free" and "modified" nucleons.

First Application: Free Neutron F2

e'

e'

n

p

- Why the neutron?
 - Flavor separation, baseline for nuclear modifications
- What makes the free neutron structure hard to measure?
 - Can only access neutrons in a nucleus.
 - Includes nuclear binding effects, Fermi motion, etc.
- <u>Two options:</u> Inclusive + theory (broad) or tagged measurements (differential).
 - Tagging "fixes" the nuclear configuration and allows for more differential study.
- On-shell extrapolation enables access to free nucleon structure (Sargsian, Strikman 2005).

Preliminaries

- Previous fixed target experiments have measured the neutron F_2 at high-x.
 - (CLAS, Phys. Rev. Lett. 108, 199902 (2012))
 - BONUS measurement had a lower pT cutoff ~ 70 MeV/c.
- Tagged DIS @ the EIC:
 - In a collider, can tag spectators down to pT ~ 0 MeV/c -> Enables extraction of free neutron structure function via pole extrapolation.
 - Can extend tagged DIS measurement to $x \leq 0.1$.
- Method will be first shown for measuring proton F_2 for validation, then the neutron results will be shown.
 - Detector effects will be added later to discuss prospects for measurement in the EIC detectors.

MC Generator: BeAGLE

- BeAGLE used to generate e+d 100M events @ 18x110 GeV/n.
 - Implements the light-front wavefunction of the deuteron.
 - Same setup was used for the BeAGLE paper (PLB 811, 135877 (2020)), just the DIS process.

Basic Method - Tagging

 α_{spect} : light-cone momentum fraction

$$\alpha_{spect} \equiv \frac{2p_{nucleon}^{+}}{p_{nucleus}^{+}} = \frac{2(E_{spect} - p_{z,spect})}{M_d}$$

 S_d : deuteron spectral function

- Measure the cross-section differential on the spectator kinematics.
 - $\mathcal{F}_d(x, Q^2; p_{T,spect}, \alpha_{spect})$ is analogous to the standard HERA σ_r .
 - $\mathcal{F}_d(x, Q^2; p_{T,spect}, \alpha_{spect}) \propto S_d \times F_{2,nucleon}$

$$d\sigma = Flux(x, Q^2) \times \mathcal{F}_d \times \frac{dx}{2} dQ^2 \frac{d\phi_{e'}}{2\pi} \left[2(2\pi)^3 \right]^{-1} \frac{d\alpha_{spect}}{\alpha_{spect}} \frac{dp_{T,spect}^2}{2} d\phi_{spect}$$

• Extract \mathcal{F}_d differentially in $(p_{T,spect}, \alpha_{spect})$ by weighting with flux factor and constants.

Basic Method - pole extrapolation (arxiv:2006.03033)

- Once \mathcal{F}_d is measured, multiply by the inverse of the pole of the spectral function to remove

$$\mathcal{F}_d \to \mathcal{F}_d \times \frac{\left(p_{T,spect}^2 + a_T^2\right)^2}{R}$$

• Extrapolate to $p_{T,spect}^2 \rightarrow -a_T^2$ to extract \mathbf{F}_2 to extract free nucleon F₂.

 $p_{vT}^2 > 0$ physical region $p_{pT}^2 \rightarrow -a_T^2$ pole extrapolation

 $\frac{\left(p_{T,spect}^2 + a_T^2\right)^2}{R} = inverse \ pole \ of \ spectral \ function$ R = residue of spectral function $a_T^2 = position of pole$

Basic Method (pole extrapolation)

$$\mathcal{F}_d \to \mathcal{F}_d \times \frac{\left(p_{T,spect}^2 + a_T^2\right)^2}{R}$$

- Method eliminates nuclear binding effects.
- Resulting dependence on $p_{T,spect}^2$ is very weak and the extrapolation can be performed with a 1st-degree polynomial fit.

F₂ Proton

- Free proton structure function extracted from tagging (below plots) compared with input to BeAGLE (calculated with HERA inclusive method).
 - $\sigma_r = 0.279415 + -0.000189$
- First p_T² bin not used in fit.
- Detailed comparison: Work in progress.

F₂ Neutron

- Free neutron structure function extracted from tagging (below plots) compared with input to BeAGLE (calculated with HERA inclusive method).
 - $\sigma_r = 0.278514 + /-0.000189$
- First p_T^2 bin not used in fit.
- Detailed comparison: Work in progress.

Summary

- Basic method of on-shell extrapolation demonstrated.
 - Method removes nuclear binding effects and FSI to yield access to free nucleon structure.
 - P_T dependence after pole removal is very smooth.
- Free structure functions extracted with tagging reproduce free nucleon input.
 - Need to finalize checks of extraction method for free proton and neutron F₂.
 - Accuracy of physics model input.
- Outlook and next steps.
 - Perform full GEANT simulations to establish experimental prospects for full physics program at the EIC.
 - Detector resolutions, acceptance, beam effects, etc.
 - Use tagging method to study nuclear modifications (EMC effect, anti-shadowing, etc.).

Backup

Basic Method (pole extrapolation; REF)

$$d\sigma = Flux(x, Q^2) \times \mathcal{F}_d \times \frac{dx}{2} dQ^2 \frac{d\phi_{e'}}{2\pi} \left[2(2\pi)^3 \right]^{-1} \frac{d\alpha_{spect}}{\alpha_{spect}} \frac{dp_{T,spect}^2}{2} d\phi_{spect}$$

• Once \mathcal{F}_d is measured, multiply by the inverse of the pole of the spectral function to remove the pole dependence on the distribution.

$$\mathcal{F}_d \to \mathcal{F}_d \times \frac{\left(p_{T,spect}^2 + a_T^2\right)^2}{R}$$

• Extrapolate to $p_{pT}^2 \rightarrow -a_T^2$ to extract F2.

$$a_T^2 = m_N^2 - \alpha_{spect}(2 - \alpha_{spect}) \frac{M_d^2}{4}$$

$$R = 2\alpha_{spect}^2 m_N \Gamma^2 (2 - \alpha_{spect})$$